Atmospheric Chemistry of CF₃CH₂OCH₂CF₃: UV Spectra and Kinetic Data for CF₃CH(•)OCH₂CF₃ and CF₃CH(OO•)OCH₂CF₃ Radicals and Atmospheric Fate of CF₃CH(O•)OCH₂CF₃ Radicals

T. J. Wallington* and A. Guschin

Ford Research Laboratory, SRL-3083, Ford Motor Company, P.O. Box 2053, Dearborn, Michigan 48121-2053

T. N. N. Stein, J. Platz, J. Sehested, L. K. Christensen, and O. J. Nielsen

Atmospheric Chemistry, Building 313, Plant Biology and Biogeochemistry Department, Risø National Laboratory, DK-4000 Roskilde, Denmark

Received: September 8, 1997; In Final Form: December 1, 1997

Pulse radiolysis transient UV absorption spectroscopy was used to study the ultraviolet absorption spectra (220–320 nm) and kinetics of CF₃CH(•)OCH₂CF₃ and CF₃CH(OO•)OCH₂CF₃ radicals at 296 K. At 230 nm σ (CF₃CH(•)OCH₂CF₃) = (1.95 ± 0.24) × 10⁻¹⁸ and σ (CF₃CH(OO•)OCH₂CF₃) = (4.40 ± 0.51) × 10⁻¹⁸ cm² molecule⁻¹. Rate constants for the reaction of F atoms with CF₃CH₂OCH₂CF₃, the self-reactions of CF₃CH(•)OCH₂CF₃ and CF₃CH(OO•)OCH₂CF₃ radicals, the association reaction of CF₃CH(•)OCH₂CF₃ radicals with O₂, and the reactions of CF₃CH(OO•)OCH₂CF₃ radicals with NO and NO₂ were (1.5 ± 0.7) × 10⁻¹¹, (2.6 ± 0.4) × 10⁻¹¹, (5.4 ± 0.7) × 10⁻¹² (uncorrected for possible secondary chemistry), (2.3 ± 0.3) × 10⁻¹², (1.45 ± 0.4) × 10⁻¹¹, and (8.4 ± 0.8) × 10⁻¹² cm³ molecule⁻¹ s⁻¹, respectively. Using an FTIR technique, rate constants for the reaction of Cl atoms with CF₃CH₂OCH₂CF₃ and CF₃C(O)OCH₂CF₃ were determined to be (7.1 ± 0.9) × 10⁻¹³ and (9.4 ± 1.3) × 10⁻¹⁶ cm³ molecule⁻¹ s⁻¹. Finally, it was determined that the atmospheric fate of CF₃CH(O•)OCH₂CF₃ radicals is decomposition via C–C bond scission to give CF₃ radicals and 2,2,2-trifluoroethyl formate (CF₃CH₂OCHO) which occurs at a rate of approximately 7 × 10⁵ s⁻¹. The results are discussed with respect to the atmospheric chemistry of CF₃CH₂OCH₂CF₃ and analogous compounds.

1. Introduction

Recognition of the adverse effect of chlorofluorocarbon (CFC) release into the atmosphere^{1,2} has led to an international effort to replace CFCs with environmentally acceptable alternatives. Hydrofluoroethers (HFEs) are fluid compounds which have been developed to replace CFCs in applications such as the cleaning of electronic equipment, heat-transfer agents in refrigeration systems, and carrier fluids for lubricant deposition. Bis(2,2,2-trifluoroethyl) ether (CF₃CH₂OCH₂CF₃) is a volatile liquid with a boiling point of 62-63 °C and a vapor pressure of 115 Torr at 19 °C. We are interested in this compound because it may find application as a CFC replacement and because a study of its atmospheric chemistry sheds light on the environmental impact of commercial HFEs such as C₄F₉OCH₃ (HFE-7100) and C₄F₉OC₂H₅ (HFE-7200).

The atmospheric oxidation of $CF_3CH_2OCH_2CF_3$ will be initiated by reaction with OH radicals. The alkyl radical produced in reaction 1 will add O₂ rapidly to give a peroxy radical.

$$CF_3CH_2OCH_2CF_3 + OH \rightarrow CF_3CH(\bullet)OCH_2CF_3 + H_2O$$
 (1)

$$CF_3CH(\bullet)OCH_2CF_3 + O_2 + M \rightarrow CF_3CH(OO\bullet)OCH_2CF_3 + M$$
 (2)

By analogy to other peroxy radicals,³ CF₃CH(OO•)OCH₂CF₃

radicals will react with NO, NO₂, HO₂, and other peroxy radicals in the atmosphere.

$$CF_3CH(OO\bullet)OCH_2CF_3 + NO + M \rightarrow CF_3CH(ONO_2)OCH_2CF_3 + M$$
 (3b)

$$CF_3CH(OO\bullet)OCH_2CF_3 + NO_2 + M \rightarrow CF_3CH(OONO_2)OCH_2CF_3 + M$$
 (4)

$$CF_3CH(OO\bullet)OCH_2CF_3 + HO_2 \rightarrow products$$
 (5)

$$CF_3CH(OO\bullet)OCH_2CF_3 + R'O_2 \rightarrow products$$
 (6)

Experiments have been performed in our laboratories to elucidate the atmospheric chemistry of $CF_3CH_2OCH_2CF_3$. A pulse radiolysis time-resolved UV-visible spectroscopic technique was used at Risø to measure the UV absorption spectra of $CF_3CH(\bullet)OCH_2CF_3$ and $CF_3CH(OO\bullet)OCH_2CF_3$ radicals and to study the kinetics of reactions 2, 3, 4, and 6. In the case of reaction 6 we studied the self-reaction of the peroxy radical $(R'O_2 = CF_3CH(OO\bullet)OCH_2CF_3)$. The fate of the alkoxy radical $CF_3CH(O\bullet)OCH_2CF_3$ produced in reaction 3a was determined using a FTIR spectrometer coupled to a smog chamber at Ford Motor Company. The results are reported herein and discussed

\$1089-5639(97)02933-2 CCC: \$15.00 © 1998 American Chemical Society Published on Web 01/27/1998 with respect to the environmental impact of bis(2,2,2-trifluoroethyl) ether and other HFEs.

2. Experimental Section

The two experimental systems used are described in detail elsewhere. $^{4-6}$

2.1. Pulse Radiolysis System at Risø National Laboratory. A pulse radiolysis transient UV absorption apparatus⁴ was used to study the UV absorption spectra and kinetics of $CF_3CH(\bullet)$ -OCH₂CF₃ and CF₃CH(OO•)OCH₂CF₃ radicals. Radicals were generated by radiolysis of gas mixtures in a 1 L stainless steel reactor by a 30 ns pulse of 2 MeV electrons from a Febetron 705B field emission accelerator. The radiolysis dose, referred to herein as a fraction of maximum dose, was varied by insertion of stainless steel attenuators between the accelerator and the chemical reactor. The analyzing light was provided by a pulsed Xenon arc lamp, reflected in the reaction cell by internal White type optics, dispersed using a 1 m McPherson monochromator (operated at a spectral resolution of 0.8 nm), and detected by a pulse experiments with no signal averaging.

 SF_6 was used as the diluent gas. Radiolysis of SF_6 produces fluorine atoms:

$$SF_6 + 2 \text{ MeV e}^- \rightarrow F + \text{ products}$$
 (7)

 SF_6 was always present in great excess to minimize the relative importance of direct radiolysis of other compounds in the gas mixtures. The fluorine atom yield was determined by measuring the yield of CH₃O₂ radicals following radiolysis of mixtures of 10 mbar CH₄, 40 mbar O₂, and 950 mbar SF₆:

$$F + CH_4 \rightarrow CH_3 + HF \tag{8}$$

$$CH_3 + O_2 + M \rightarrow CH_3O_2 + M \tag{9}$$

CH₃O₂ radicals were monitored using their absorption at 260 nm. On the basis of $\sigma_{260 \text{ nm}}(\text{CH}_3\text{O}_2) = 3.18 \times 10^{-18} \text{ cm}^2$ molecule⁻¹⁷ the F atom yield at full radiolysis dose and 1000 mbar SF₆ was determined to be (2.98 ± 0.33) × 10¹⁵ cm⁻³ (760 Torr = 1013 mbar). The quoted uncertainty reflects both statistical uncertainties associated with the calibration procedure and a 10% uncertainty in $\sigma(\text{CH}_3\text{O}_2)$.⁷

Reagents used were the following: 0-30 mbar O₂ (ultrahigh purity), 950-1000 mbar SF₆ (99.9%), 0-31.1 mbar CF₃CH₂-OCH₂CF₃ (>99%), 0-1.02 mbar NO (>99.8%), 0-0.69 mbar NO₂ (>98%), and 0-50 mbar of CF₃CCl₂H (>99%). All were used as received. The CF₃CH₂OCH₂CF₃ sample was repeatedly degassed by freeze-pump-thaw cycles before use. Four sets of experiments were performed using the pulse radiolysis system. First, the radiolysis of SF₆/CF₃CH₂OCH₂CF₃ mixtures was used to study the UV spectrum and kinetics of the CF3-CH(•)OCH₂CF₃ alkyl radical. Second, the radiolysis of SF₆/ CF₃CH₂OCH₂CF₃/CF₃CCl₂H mixtures was employed to study the competition for F atoms by CF₃CH₂OCH₂CF₃ and CF₃-CCl₂H and thereby to measure the rate of reaction of F atoms with CF₃CH₂OCH₂CF₃. Third, the radiolysis of SF₆/CF₃CH₂-OCH₂CF₃/O₂ mixtures was used to study the UV spectrum and kinetics of the CF₃CH(OO•)OCH₂CF₃ alkyl peroxy radical. Finally, the radiolysis of SF₆/CF₃CH₂OCH₂CF₃/O₂/NO_x mixtures was used to study the rates of reaction of the CF₃CH-(OO•)OCH₂CF₃ radical with NO and NO₂.

2.2. FTIR-Smog Chamber System at Ford Motor Company. All experiments were performed in a 140 L Pyrex

Figure 1. Transient absorptions at 230 nm following radiolysis of mixtures of (A) 10 mbar $CF_3CH_2OCH_2CF_3$ and 990 mbar SF_6 (0.32 dose) and (B) 10 mbar $CF_3CH_2OCH_2CF_3$, 30 mbar of O₂, and 960 mbar of SF_6 (0.53 dose). The UV analysis path length was 160 cm. Absorption is ascribed to (A) $CF_3CH(\bullet)OCH_2CF_3$ radicals and (B) $CF_3-CH(OO\bullet)OCH_2CF_3$ radicals. The smooth lines are second-order decay fits.

reactor interfaced to a Mattson Sirus 100 FTIR spectrometer.⁶ The reactor was surrounded by 22 fluorescent blacklamps (GE F15T8-BL). The oxidation of CF₃CH₂OCH₂CF₃ was initiated by reaction with Cl atoms generated by the photolysis of molecular chlorine in 700 Torr total pressure of O₂/N₂ diluent at 295 \pm 2 K:

$$Cl_2 + h\nu \rightarrow 2Cl$$
 (10)

 $Cl + CF_3CH_2OCH_2CF_3 \rightarrow$

$$CF_3CH(\bullet)OCH_2CF_3 + HCl (11)$$

$$CF_3CH(\bullet)OCH_2CF_3 + O_2 + M \rightarrow CF_3CH(OO\bullet)OCH_2CF_3 + M$$
 (2)

Loss of $CF_3CH_2OCH_2CF_3$ and product formation were monitored by Fourier transform infrared (FTIR) spectroscopy using an infrared path length of 28 m and a resolution of 0.25 cm⁻¹. Infrared spectra were derived from 32 co-added interferograms (the data acquisition took 1.5 min).

Radicals were generated by the UV irradiation of mixtures of 4.4-5.2 mTorr of CF₃CH₂OCH₂CF₃ (>99%) or 4.0-4.4 mTorr of CF₃C(O)OCH₂CF₃ (>99%), 90-370 mTorr of Cl₂ (research grade), 0-600 Torr of O₂ (ultrahigh purity), and 0-11 mTorr of NO (>99%) in 700 Torr of total pressure with

Figure 2. Maximum transient absorptions (UV path length = 160 cm) at 230 nm observed following radiolysis of mixtures of 10 mbar CF₃-CH₂OCH₂CF₃ and 990 mbar SF₆ (circles) and 10 mbar CF₃CH₂OCH₂-CF₃, 30 mbar of O₂, and 960 mbar of SF₆ (triangles). Solid lines are linear least-squares fits to the low-dose data (filled symbols). Dotted lines are polynomial fits to aid visual inspection of the data trend.

ultrahigh purity N₂ diluent (760 Torr = 1013 mbar). CF₃CH₂-OCH₂CF₃, CF₃C(O)OCH₂CF₃, and COF₂ were monitored using their characteristic features over the wavenumber ranges 900–1400, 1780–1850, and 1880–1980 cm⁻¹, respectively. Reference spectra were acquired by expanding known volumes of reference materials into the chamber. At 1944 cm⁻¹ σ (COF₂) = 1.21 × 10⁻¹⁸ cm² molecule⁻¹, while at 1817 cm⁻¹ σ (CF₃C(O)OCH₂CF₃) = 1.11 × 10⁻¹⁸ cm² molecule⁻¹. Two sets of experiments were performed. First, relative rate techniques were used to determine the rate constants for reactions of Cl atoms with CF₃CH₂OCH₂CF₃ and CF₃C(O)OCH₂-CF₃. Second, the products of the atmospheric oxidation of CF₃-CH₂OCH₂CF₃ were investigated by irradiating CF₃CH₂OCH₂-CF₃/Cl₂/NO/O₂/N₂ mixtures.

3. Results and Discussion

3.1. UV Absorption Spectrum of the CF₃CH(•)OCH₂CF₃ Radical. Following the pulse radiolysis of mixtures of 10 mbar of CF₃CH₂OCH₂CF₃ and 990 mbar of SF₆, a rapid increase (complete within $1-2 \mu s$) in absorption at 230 nm was observed, followed by a slower decay. Figure 1A shows a typical absorption transient. No absorption was observed when either 10 mbar of CF₃CH₂OCH₂CF₃ or 990 mbar of SF₆ was subject to pulse radiolysis separately. We ascribe the absorption in Figure 1A to formation of CF₃CH(•)OCH₂CF₃ radicals via reaction 12 and their subsequent loss via self-reaction (13).

$$F + CF_3CH_2OCH_2CF_3 \rightarrow CF_3CH(\bullet)OCH_2CF_3 + HF$$
 (12)

In this work we assume that F atoms react with CF_3CH_2 -OCH₂CF₃ exclusively via H atom abstraction. To determine the absorption cross section of the CF₃CH(•)OCH₂CF₃ radical at 230 nm, the maximum transient absorbance was recorded at various radiolysis doses. Figure 2 (circles) shows a plot of the observed maximum absorbance versus the radiolysis dose (and hence initial radical concentration). The absorbance increases linearly up to 42% of full dose, suggesting that unwanted radical-radical reactions such as reactions 13 and 14, are

TABLE 1: Selected UV Absorption Cross Sections

	-	
wavelength (nm)	$ \begin{aligned} \sigma(\mathrm{CF_3CH}(\bullet)\mathrm{OCH_2CF_3}) \\ \times \ 10^{20} \ (\mathrm{cm^2 \ molecule^{-1}}) \end{aligned} $	$ \sigma(\text{CF}_3\text{CH}(\text{OO}\bullet)\text{OCH}_2\text{CF}_3) \\ \times 10^{20} \text{ (cm}^2 \text{ molecule}^{-1}) $
220	244	428
225	218	439
230	195	440
235	171	401
240	149	350
245	123	304
250	99	248
255	74	205
260	54	153
270	24	86
280	14	42
290	4	21
300	8	11
320	4	5
<u> </u>		

Figure 3. Spectra of the radical species $CF_3CH(\bullet)OCH_2CF_3$ (circles) and $CF_3CH(OO\bullet)OCH_2CF_3$ (triangles).

unimportant in this range.

$$CF_3CH(\bullet)OCH_2CF_3 + CF_3CH(\bullet)OCH_2CF_3 + M \rightarrow products$$
 (13)

$$F + CF_3CH(\bullet)OCH_2CF_3 \rightarrow products$$
 (14)

Linear least squares regression of the low-dose data in Figure 2 gives a slope of 0.40 ± 0.02 . Combining this result with the calibrated fluorine atom yield of $(2.98 \pm 0.33) \times 10^{15}$ cm⁻³ at full dose and 1000 mbar of SF₆, and the optical path length of 160 cm gives $\sigma_{230 \text{ nm}}$ (CF₃CH(•)OCH₂CF₃) = $(1.95 \pm 0.24) \times 10^{-18}$ cm² molecule⁻¹. The UV absorption spectrum in the range 220–320 nm was mapped out by comparing the absorption at a given wavelength to that at 230 nm and scaling to $\sigma_{230 \text{ nm}} = 1.95 \times 10^{-18}$ cm² molecule⁻¹. The results are listed in Table 1 and plotted in Figure 3.

3.2. Kinetics of the Self-Reaction of CF₃CH(•)OCH₂CF₃ Radicals. The rate constant for the self-reaction of CF₃CH-(•)OCH₂CF₃ radicals was determined by monitoring the rate of decay of the absorption at 230 nm following pulse radiolysis of mixtures of 10 mbar of CF₃CH₂OCH₂CF₃ and 990 mbar of SF₆. The radiolysis dose was varied between full dose and 22% of full dose. The half-lives of the decays were derived from fits to the experimental transients using a second-order expression: $A(t) = A_{inf} + (A_0 - A_{inf})/(1 + k'(A_0 - A_{inf})t)$, where A(t)

Figure 4. (A) Reciprocal half-lives for the self-reaction of CF₃CH-(•)OCH₂CF₃ (circles) and CF₃CH(OO•)OCH₂CF₃ (triangles) radicals versus the maximum transient absorbance at 230 nm. (B) Pseudo-firstorder formation rate constant of CF₃CH(OO•)OCH₂CF₃ radicals versus the initial oxygen pressure. The inset shows a typical experimental transient (see text for details).

is the time-dependent absorbance, A_0 and A_{inf} (always close to zero) are the absorbances at t = 0, and at $t = \infty$, respectively, and $k' = 2k_{13} \sigma_{230 \text{ nm}}(\text{CF}_3\text{CH}(\bullet)\text{OCH}_2\text{CF}_3)l/\ln 10$. k_{13} is the rate constant for reaction 13 and l is the optical path length, 160 cm. The decays were always well described by the second-order expression above. An example of a fit is shown in Figure 1A. The filled circles in Figure 4A show the reciprocal of the decay half-lives at various doses versus the maximum transient absorbance. A linear regression analysis gives a slope of (3.9 \pm 0.3) \times 10⁵ s⁻¹. This slope equals $k_{13}(2 \times 2.303)/(l \sigma_{230 \text{ nm}}(\text{CF}_3\text{CH}(\bullet)\text{OCH}_2\text{CF}_3))$. Hence, $k_{13} = (2.6 \pm 0.4) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹. The quoted uncertainty includes uncertainties in both the slope of the line in Figure 4A and in $\sigma_{230 \text{ nm}}(\text{CF}_3\text{-CH}(\bullet)\text{OCH}_2\text{CF}_3)$.

3.3. Kinetics of the $\mathbf{F} + \mathbf{CF_3CH_2OCH_2CF_3}$ Reaction. The rate constant ratio k_{12}/k_{15} was determined from the maximum transient absorption at 230 nm following pulse radiolysis of mixtures of 0–31.1 mbar of CF₃CH₂OCH₂CF₃, 50 mbar of CF₃-CCl₂H, and 1000 mbar SF₆. Reactions 12 and 15 compete for the available F atoms.

$$F + CF_3CH_2OCH_2CF_3 \rightarrow CF_3CH(\bullet)OCH_2CF_3 + HF$$
 (12)

$$F + CF_3CCl_2H \rightarrow CF_3CCl_2 + HF$$
(15)

The alkyl radical, CF₃CCl₂, formed by reaction of F atoms with CF₃CCl₂H (HCFC-123) absorbs strongly at 230 nm ($\sigma_{CF3CCl2}$ = 9.7 × 10⁻¹⁸ cm² molecule^{-1 8}). In contrast, absorption by the CF₃CH(•)OCH₂CF₃ radical is significantly weaker (σ = 1.95 × 10⁻¹⁸ cm² molecule⁻¹, see section 3.1). Figure 5 shows the

Figure 5. The maximum transient absorbance at 230 nm versus $[CF_3-CH_2OCH_2CF_3]/[CF_3CCl_2H]$. The smooth line is a fit to the data; see text for details.

observed variation of the maximum transient absorbance at 230 nm as a function of the concentration ratio $[CF_3CH_2OCH_2CF_3]/$ [CF₃CCl₂H] (the radiolysis dose was 0.32). The maximum transient absorption decreases with increasing CF₃CH₂OCH₂-CF₃ concentration because a greater fraction of the F atoms react with CF₃CH₂OCH₂CF₃.

The data in Figure 5 can be fitted with a three-parameter expression

$$A_{\text{max}} = \frac{A_{\text{CF3Cl2}} + A_{\text{CF3CH}(\bullet)\text{OCH2CF3}} \left[\frac{k_{12}}{k_{15}}\right] \left\{\frac{[\text{CF}_{3}\text{CH}_{2}\text{OCH}_{2}\text{CF}_{3}]}{[\text{CF}_{3}\text{CCl}_{2}\text{H}]}\right]}{1 + \left[\frac{k_{12}}{k_{15}}\right] \left\{\frac{[\text{CF}_{3}\text{CH}_{2}\text{OCH}_{2}\text{CF}_{3}]}{[\text{CF}_{3}\text{CCl}_{2}\text{H}]}\right\}}$$

where A_{max} , A_{CF3CCl2} , and $A_{\text{CF3CH}(\bullet)\text{OCH2CF3}}$ are the observed maximum absorbance for the mixture of radicals, the maximum absorbance expected if 100% of the F atoms were to react with CF₃CCl₂H, and the maximum absorbance expected if 100% of the F atoms were to react with CF₃CH₂OCH₂CF₃, respectively. A_{CF3CCl2} , $A_{\text{CF3CH}(\bullet)\text{OCH2CF3}}$, and k_{12}/k_{15} were simultaneously varied and the best fit was achieved with $A_{\text{CF3CCl2}} = 0.67 \pm 0.04$, $A_{\text{CF3CCH}(\bullet)\text{OCH2CF3}} = 0.13 \pm 0.03$, and $k_{12}/k_{15} = 12.4 \pm 3.8$. The results for A_{CF3CCl2} and A_{C4F9OCH2} are consistent with those expected based on the absorption cross sections of the CF₃-CCl₂ and CF₃CH(\bullet)OCH₂CF₃ radicals given above. Using k_{15} = $(1.2 \pm 0.4) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹⁹ gives $k_{12} = (1.5 \pm 0.7) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹.

3.4. UV Absorption Spectrum of the CF₃CH(OO•)-OCH₂CF₃ Radical. To study the UV spectrum of the peroxy radical CF₃CH(OO•)OCH₂CF₃, mixtures of 10 mbar of CF₃-CH₂OCH₂CF₃, 30 mbar of O₂, and 960 mbar SF₆ were subject to pulse radiolysis, and the resulting transient absorbance was monitored at 230 nm. A typical experimental absorption is shown in Figure 1B. The maximum absorption observed at 230 nm following the radiolysis of SF₆/CF₃CH₂OCH₂CF₃/O₂ mixtures was approximately 2 times that observed following radiolysis of SF₆/CF₃CH₂OCH₂CF₃/O₂ mixtures to the formation of CF₃CH(OO•)OCH₂CF₃ radicals via reactions 12 and 2.

To derive the UV absorption spectrum of the $CF_3CH(OO\bullet)$ -OCH₂CF₃ radical we need to work under conditions where unwanted secondary radical-radical reactions such as reactions 13, 14, and 16–18 are avoided or minimized.

$$CF_3CH(OO\bullet)OCH_2CF_3 + CF_3CH(OO\bullet)OCH_2CF_3 \rightarrow products$$
 (16)

$$CF_3CH(OO\bullet)OCH_2CF_3 + CF_3CH(\bullet)OCH_2CF_3 \rightarrow$$

products (17)

$$CF_3CH(OO\bullet)OCH_2CF_3 + F \rightarrow products$$
 (18)

In addition, the reaction of F atoms with O_2 needs to be minimized:

$$F + O_2 + M \rightarrow FO_2 + M \tag{19}$$

To minimize the amount of F atoms consumed by reaction 19, the oxygen concentration should be low. However, a low oxygen concentration will increase the importance of reactions 13, 14, and 17. Clearly, a compromise is needed. An initial O₂ concentration of 30 mbar was chosen. Under these experimental conditions 3.7% of the F atoms are converted into FO₂ ($k_{19} = 1.9 \times 10^{-13}$ ¹⁰ and $k_{12} = 1.5 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹). Absolute values for the absorption cross sections (in units of 10^{-20} cm² molecule⁻¹) of FO₂ at different wavelengths are¹⁰ $\sigma_{225 \text{ nm}} = 755$, $\sigma_{230 \text{ nm}} = 508$, $\sigma_{235 \text{ nm}} = 341$, $\sigma_{240 \text{ nm}} = 180$, $\sigma_{245 \text{ nm}} = 153$, and $\sigma_{254 \text{ nm}} = 69$ and can be used to correct for the absorbance caused by FO₂ radicals.

There are no literature data concerning the kinetics of reactions 14, 17, and 18, so we cannot calculate their importance. To check for these unwanted radical-radical reactions the transient absorption at 230 nm was measured in experiments using $[CF_3CH_2OCH_2CF_3] = 10$ mbar, $[O_2] = 30$ mbar, and $[SF_6] = 960$ mbar with the radiolysis dose (and hence initial radical concentration) varied over 1 order of magnitude. The UV path length was 160 cm. The triangles in Figure 2 show the observed maximum transient absorption as a function of the dose. As seen from Figure 2, the absorption is linear with radiolysis dose up to 42% of maximum dose. This linearity indicates that at low radiolysis doses unwanted secondary radical-radical reactions are not important. The solid line drawn through the data in Figure 2 is a linear least-squares fit to the low-dose data which gives a slope of 0.88 ± 0.03 . From this and three additional pieces of information, (i) the F atom vield of $(2.98 \pm 0.33) \times 10^{15} \text{ cm}^{-3}$ (full dose and [SF₆] = 1000 mbar), (ii) the conversion of F atoms into CF₃CH(OO•)OCH₂-CF₃ (96.3%) and FO₂ (3.7%), and (iii) the absorption cross section for FO₂ at 230 nm ($\sigma = 5.08 \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1.10}$), we derive $\sigma(CF_3CH(OO\bullet)OCH_2CF_3)$ at 230 nm = (4.40 ± 0.51) $\times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}$. The quoted uncertainty reflects two standard deviations from a linear least-squares fit to the lowdose data in Figure 2 and uncertainty in the absolute calibration of the fluorine atom yield.

To map out the spectrum of the CF₃CH(OO•)OCH₂CF₃ radical, the maximum transient absorbance was measured over the range 220–320 nm, scaled to that at 230 nm, and placed on an absolute basis using $\sigma(230 \text{ nm}) = 4.40 \times 10^{-18} \text{ cm}^2$ molecule⁻¹. Corrections were applied to account for the formation of FO₂ using the formula $\sigma_{\text{corrected}} = (\sigma_{\text{raw}} - \sigma_{\text{FO2}})0.037)/0.963$ where σ_{raw} is the cross section calculated assuming 100% yield of RO₂ radicals. The results are plotted in Figure 3 and listed in Table 1. The UV spectra of alkyl peroxy radicals typically consist of a single broad structureless feature in the region 200–300 nm with a width of 40–50 nm

and a maximum cross section located at 235-245 nm of (4– 5) × 10⁻¹⁸ cm² molecule^{-1,7,11} Fluorine substitution results in a blue shift of 10–20 nm.^{7,11} The spectrum for the CF₃CH-(OO•)OCH₂CF₃ radical shown in Figure 3 is consistent with that expected based upon the published spectra of other peroxy radicals.

3.5. Association Reaction between O₂ and the CF₃CH-(•)OCH₂CF₃ Radical. The rate constant for the reaction between CF₃CH(•)OCH₂CF₃ radicals and O₂ was measured by monitoring the rate of increase in absorption at 230 nm at short times $(1-10 \ \mu s)$ following pulsed radiolysis (35-42% dose)of mixtures of 10 mbar of CF₃CH₂OCH₂CF₃, 3.3-14.9 mbar of O₂, and 990 mbar of SF₆. The inset in Figure 4B shows the transient recorded using 7.98 mbar of O2. As discussed above, the peroxy radical CF₃CH(OO•)OCH₂CF₃ absorbs strongly at 230 nm ($\sigma = 4.4 \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}$) and its formation can be monitored easily. In the presence of 10 mbar of CF₃-CH₂OCH₂CF₃ the lifetime of F atoms with respect to conversion into alkyl radicals is 0.27 μ s. At 1 μ s after the radiolysis pulse the conversion of F atoms into CF₃CH(•)OCH₂CF₃ radicals is 97% complete. The observed increase in absorption at times greater than 1 μ s (see inset in Figure 4B) followed first-order kinetics and increased with increasing O₂ partial pressure. We ascribe this increase in absorption to the formation of CF₃CH-(OO•)OCH₂CF₃ radicals via reaction 2. A first-order rise expression was fit to the increase in absorption at reaction times of $1-10 \ \mu s$. The expression used was $A(t) = (A_0 - A_{inf}) \exp (-A_{inf}) \exp ((-k_{\text{formation}}t) + A_{\text{inf}}$, where $k_{\text{formation}}$ is the pseudo-first-order formation rate constant, A(t) is the absorbance as a function of time, A_0 is the maximum absorbance by CF₃CH(•)OCH₂CF₃ radicals, and Ainf, is the maximum absorbance by CF₃CH(OO•)-OCH₂CF₃ radicals. k_{formation}, A₀, and A_{inf} were used as fit parameters. The pseudo-first-order formation rate constants $(k_{\text{formation}})$ are plotted as function of $[O_2]$ in Figure 4B. Linear least-squares analysis gives $k_2 = (2.3 \pm 0.3) \times 10^{-12} \text{ cm}^3$ molecule⁻¹ s⁻¹. The y-axis intercept in Figure 4B is (1.2 \pm 0.6) $\times 10^5$ s⁻¹, which we attribute to the influence of loss of CF₃CH(•)OCH₂CF₃ and CF₃CH(OO•)OCH₂CF₃ radicals via their self-reactions. The measured value of k_2 is typical for addition of O₂ to an alkyl radical, which typically lie in the range $(1-5) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.^{7,11}

3.6. Kinetics of the Self-Reaction of $CF_3CH(OO)$ -OCH₂CF₃ Radicals. Figure 1B shows a typical transient absorption observed following the pulsed radiolysis of CF₃CH₂-OCH₂CF₃/SF₆/O₂ mixtures. The decay of the absorption is due to the self-reaction of the CF₃CH(OO•)OCH₂CF₃ radical:

 $CF_3CH(OO\bullet)OCH_2CF_3 + CF_3CH(OO\bullet)OCH_2CF_3 \rightarrow$ products (16)

The rate constant of reaction 16 is defined by the equation $-d[RO_2]/dt = 2k_{160bs}[RO_2]^2$. The observed rate constant k_{160bs} for reaction 16 can be obtained from a plot of the reciprocal half-lives of the peroxy radical decay versus the maximum transient absorbance measured at 230 nm. The triangles in Figure 4A show such a plot. The absorbances have been corrected for the absorption due to FO₂ according to the formula $A = A_{obs} - \sigma(FO_2) \times 160 \text{ cm} \times 0.037 \times 2.98 \times 10^{15} \text{ molecule}$ cm⁻³ × dose. The decay half-lives were derived from a fit to the transients using the second-order expression $A(t) = A_{inf} + (A_0 - A_{inf})/(1 + k'(A_0 - A_{inf})t)$, where A(t) is the time-dependent absorbance, A_0 and A_{inf} are the absorbances at t = 0, and at $t = \infty$, respectively. $k' = 2k_{160bs} \ln 10/(l \sigma_{RO2}(230 \text{ nm}))$ where k_{160bs} is the observed second-order rate constant for the self-reaction

of the radicals. The decays were always well described by second-order kinetics. For these experiments the optical path length (*l*) was 160 cm, [CF₃CH₂OCH₂CF₃] = 10 mbar, [O₂] = 30 mbar, [SF₆] = 960 mbar, and the dose was varied between full and 6% of full dose. A linear regression analysis of the data in Figure 4A gives a slope of $(3.55 \pm 0.10) \times 10^4$ s⁻¹ which equals $k_{16obs}(2 \times 2.303)/(l \sigma_{RO2}(230 \text{ nm}))$; hence, $k_{16obs} = (5.4 \pm 0.7) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

In addition to reaction 16, the decay of the peroxy radical may also be influenced by reaction with CF_3O_2 radicals:

$$CF_3CH(O\bullet)OCH_2CF_3 + M \rightarrow CF_3CH_2OCHO + CF_3$$
 (20)

$$CF_3 + O_2 + M \rightarrow CF_3O_2 + M$$
(21)

$$CF_3CH(OO\bullet)OCH_2CF_3 + CF_3O_2 \rightarrow products$$
 (22)

Since the rate constants for reactions 20-22 are unknown, we cannot correct for these reactions at the present time. Our reported value of k_{160bs} is the observed rate constant which describes the rate of decay of absorption at 230 nm in the present system. It is interesting to compare k_{160bs} with the rate constants for the self-reaction of other peroxy radicals. As discussed by Lesclaux,12 the unsubstituted secondary peroxy radicals for which data are available (2-propyl, cyclopentyl, and cyclohexyl) undergo self-reaction with rate constants of the order of 10^{-15} - $10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. In contrast, the limited database for substituted secondary peroxy radicals (CH₃CH(OH)CH(O₂)CH₃, $CH_3CHBrCH(O_2)CH_3$, and $CF_3CH(O_2)CF_3$) suggests that such species are more reactive and undergo self-reaction with rate constants of the order of 10^{-13} - 10^{-12} cm³ molecule⁻¹ s⁻¹. Our reported value of k_{160bs} provides further evidence of the high reactivity of substituted secondary peroxy radicals.

3.7. Rate Constant for the Reaction CF₃CH(OO•)- $OCH_2CF_3 + NO \rightarrow Products$. Kinetic data were obtained by monitoring the increase in absorption at 400.5 nm ascribed to NO_2 formation following pulse radiolysis (dose = 22% of maximum) of mixtures of 10 mbar of CF3CH2OCH2CF3, 30 mbar of O_2 , 960 mbar of SF₆, and 0.31–1.02 mbar of NO. Figure 6 shows typical experimental traces. For each NO concentration the increase in absorption was fitted using the CHEMSIMUL program¹³ with the chemical mechanism in Table 2 and $\sigma(NO_2)_{400.5 \text{ nm}} = 6.5 \times 10^{-19} \text{ cm}^2 \text{ molecule}^{-1.14}$ The kinetic data in Table 2 were taken from the literature where available.^{15–18} By analogy with other halogenated peroxy radicals^{7,11} it was assumed that the formation of nitrate from reaction 3 is negligible. Two parameters, k_3 and k_{20} , were varied simultaneously to provide the fits to the experimental data shown in Figure 6. The fits were evaluated by visual inspection. The best fit values of k_3 were sensitive to the rate of increase in absorption while those for k_{20} , the decomposition rate of CF₃- $CH_2OCHO(\bullet)CF_3$ radicals, were sensitive to the magnitude of the final absorption. For all transients the final absorption could be accounted for using $k_{20} = (7 \pm 2) \times 10^5 \text{ s}^{-1}$. There are two competing loss mechanisms for CF3CH2OCHO(•)CF3 radicals in the reaction scheme in Table 2, and the value of k_{20} is actually determined relative to $k(CF_3CH_2OCHO(\bullet)CF_3 + NO)$ which is assumed equal to $k(CH_3O + NO)$. Accounting for uncertainties in $k(CF_3CH_2OCHO(\bullet)CF_3 + NO)$ we estimate that the value for k_{20} is accurate to within a factor of 2. The smooth curves in Figure 6A show the results of simulations using $k_3 = 1.45 \times$ 10^{-11} cm³ molecule⁻¹ s⁻¹, which gives acceptable fits of all the data. To illustrate the sensitivity to k_3 , the dashed lines for

Figure 6. (A) Typical experimental traces following radiolysis of $SF_6/CF_3CH_2OCH_2CF_3/O_2/NO$ mixtures, the smooth curves are fits to the data (see text for details). (B) Pseudo-first-order loss rates of NO₂ following radiolysis of $SF_6/CF_3CH_2OCH_2CF_3/O_2/NO_2$ mixtures versus the initial NO₂ concentration. The inset shows a typical experimental trace together with a first-order fit (see text for details).

 TABLE 2: Reaction Mechanism Used to Fit the

 Experimental Data

reaction	rate constant $(cm^3 molecule^{-1} s^{-1})$	ref
$F + RH^* \rightarrow R + HF^a$	1.5×10^{-11}	this work
$F + NO + M \rightarrow FNO + M$	5.1×10^{-12}	15, 16
$R + R + M \rightarrow R_2 + M$	2.6×10^{-11}	this work
$R + O_2 + M \rightarrow RO_2 + M$	2.3×10^{-12}	this work
$R + NO + M \rightarrow RNO + M$	1.5×10^{-11}	assumed
$RO_2 + RO_2 \rightarrow RO + RO + O_2$	5.4×10^{-12}	this work
$RO_2 + NO \rightarrow RO + NO_2$	1.4×10^{-11}	varied
$RO_2 + NO_2 + M \rightarrow RO_2NO_2 + M$	8.4×10^{-12}	this work
$RO + M \rightarrow CF_3 + CF_3CH_2OCHO + M$	7×10^{5}	varied
$RO + NO + M \rightarrow RONO + M$	3.6×10^{-11}	b
$CF_3 + O_2 + M \rightarrow CF_3O_2 + M$	4×10^{-12}	17
$CF_3O_2 + NO \rightarrow CF_3O + NO_2$	1.6×10^{-11}	7,11
$CF_3O_2 + NO_2 + M \rightarrow CF_3O_2NO_2 + M$	7×10^{-12}	7,11
$CF_3 + NO + M \rightarrow CF_3NO + M$	1.6×10^{-11}	17

^{*a*} R = CF₃CH₂OCH(•)CF₃. ^{*b*} Assumed equal to k(CH₃O + NO).¹⁸

the [NO] = 0.5 mbar data are simulations using $k_3 = 1.2$ and 1.7×10^{-11} cm³ molecule⁻¹ s⁻¹. We report a final value of $k_3 = (1.45 \pm 0.40) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹; the quoted uncertainty reflects the range of acceptable values of k_3 in the fits plus an additional 10% uncertainty because of the complex reaction mechanism used. This result is consistent with the kinetic data determined previously for reactions of other peroxy radicals with NO.^{7,11}

3.8. Rate Constant for the Reaction CF₃CH(OO•)- $OCH_2CF_3 + NO_2 + M \rightarrow CF_3CH(OONO_2)OCH_2CF_3 + M.$ Kinetic data were acquired by monitoring the decrease in absorption at 400.5 nm ascribed to NO₂ loss following pulse radiolysis (22% dose) of mixtures of 10 mbar of CF₃CH₂OCH₂-CF₃, 30 mbar of O_2 , 960 mbar of SF₆, and 0.19–0.69 mbar of NO₂. The inset in Figure 6B shows a typical experimental trace obtained using a mixture containing 0.39 mbar of NO₂. For each concentration of NO₂, the decrease in absorption was fitted using a first-order decay expression. The smooth line in the inset shows the result of such a fit. Figure 6B shows a plot of the resulting pseudo-first-order loss rates, k^{1st} , versus [NO₂]. Linear least-squares analysis of the data in Figure 6B gives k_4 $= (8.4 \pm 0.8) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The y-axis intercept is $-(3 \pm 9) \times 10^3$ s⁻¹ and is not significant. The NO₂ loss can be calculated from the decrease in absorption using $\sigma(NO_2) =$ $6.5 \times 10^{-19} \text{ cm}^2 \text{ molecule}^{-1 \ 14}$ and when expressed in terms of the initial F atom concentration was 1.13 ± 0.19 . The value of k_4 obtained here is similar to the high-pressure limiting rate constants for the reactions of other peroxy radicals with NO2 which lie in the range $(5-10) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹.^{7,11}

3.9. Relative Rate Studies of the Reactions of Cl Atoms with $CF_3CH_2OCH_2CF_3$ and $CF_3C(O)OCH_2CF_3$. Prior to investigating the products arising from the Cl atom initiated oxidation of $CF_3CH_2OCH_2CF_3$, relative rate experiments were performed using the FTIR setup to investigate the kinetics of the reaction of Cl atoms with $CF_3CH_2OCH_2CF_3$ and $CF_3C(O)OCH_2CF_3$. The relative rate technique is described in detail elsewhere.^{19,20} Photolysis of molecular chlorine was used as a source of Cl atoms.

$$Cl_2 + h\nu \rightarrow 2Cl$$
 (10)

The kinetics of reaction 11 were measured relative to those of reactions 23 and 24; reaction 25 was measured relative to reactions 26 and 27.

$$Cl + CF_3CH_2OCH_2CF_3 \rightarrow CF_2CH(\bullet)OCH_2CF_2 + HCl (11)$$

$$Cl + CH_3Cl \rightarrow products$$
 (23)

$$Cl + CH_3OCHO \rightarrow products$$
 (24)

$$Cl + CF_3C(O)OCH_2CF_3 \rightarrow products$$
 (25)

$$Cl + HCFC-141b (CH_3CCl_2F) \rightarrow products$$
 (26)

$$Cl + CD_4 \rightarrow products$$
 (27)

The observed loss of CF₃CH₂OCH₂CF₃ versus that of CH₃-Cl and CH₃OCHO following the UV irradiation of CF₃CH₂-OCH₂CF₃/CH₃Cl/Cl₂ and CF₃CH₂OCH₂CF₃/CH₃OCHO/Cl₂ mixtures in 700 Torr of total pressure of N₂ is shown in Figure 7A. Linear least-squares analysis gives $k_{11}/k_{23} = 1.43 \pm 0.07$ and $k_{11}/k_{24} = 0.52 \pm 0.03$. Using $k_{23} = 4.9 \times 10^{-13 \ 21}$ and $k_{24} =$ $1.4 \times 10^{-12} \ \text{cm}^3$ molecule⁻¹ s⁻¹²² gives $k_{11} = (7.0 \pm 0.8) \times 10^{-13}$ and $(7.2 \pm 0.8) \times 10^{-13} \ \text{cm}^3$ molecule⁻¹ s⁻¹, respectively, where the quoted errors include a 10% uncertainty in the reference rate constants. We choose to quote a final value which is the average of the individual determinations with error limits that encompass the extremes of the individual determinations. Hence, $k_{11} = (7.1 \pm 0.9) \times 10^{-13} \ \text{cm}^3$ molecule⁻¹ s⁻¹.

Figure 7. Plots of the decay of (A) $CF_3CH_2OCH_2CF_3$ (labeled "ether") versus CH_3Cl and CH_3OCHO and (B) $CF_3C(O)OCH_2CF_3$ (labeled "ester") versus HCFC-141b and CD_4 when mixtures containing these compounds were exposed to Cl atoms in 700 Torr of N_2 . Solid lines are linear least-squares fits.

Figure 7B shows the observed decay of $CF_3C(O)OCH_2CF_3$, HCFC-141b, and CD4 when mixtures of these compounds were exposed to Cl atoms in 700 Torr total pressure of N₂. From the data in Figure 7B, rate constant ratios of $k_{25}/k_{26} = 0.45 \pm$ 0.03 and $k_{25}/k_{27} = 0.156 \pm 0.011$ are derived. Using $k_{26} = 2.0$ \times 10^{-15 20} and $k_{27} = 6.1 \times 10^{-15 20}$ gives $k_{25} = (9.2 \pm 1.1) \times 10^{-15 20}$ 10^{-16} and $(9.5 \pm 1.2) \times 10^{-16}$ cm³ molecule⁻¹ s⁻¹, respectively, where the quoted errors include a 10% uncertainty in the reference rate constants. We choose to quote a final value which is the average of the individual determinations with error limits that encompass the extremes of the individual determinations. Hence, $k_{25} = (9.4 \pm 1.3) \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. There are no literature data for k_{11} and k_{25} to compare with our results. It is, however, of interest to compare our value for k_{23} with the rate of reaction of Cl atoms with diethyl ether that proceeds with a rate constant of 3×10^{-10} cm³ molecule⁻¹ s^{-1 23} which is at, or near, the gas kinetic limit. Making the reasonable assumption that abstraction of the H atoms from ethyl ether is statistical, it follows that reaction of Cl atoms with the -CH₂units in CF₃CH₂OCH₂CF₃ is a factor of 170 times slower than that in ethyl ether. Clearly, fluorine substitution has a dramatic effect on the reactivity the -CH2- groups (presumably by virtue of increasing the C-H bond strength).

3.10. Study of the Atmospheric Fate of $CF_3CHO(\bullet)$ -OCH₂CF₃ Radicals. To determine the atmospheric fate of the alkoxy radical CF₃CHO(\bullet)OCH₂CF₃ formed in reaction 3a, experiments were performed in which CF₃CH₂OCH₂CF₃/NO/ Cl₂/O₂ mixtures at a total pressure of 700 Torr in N₂ diluent Atmospheric Chemistry of CF₃CH₂OCH₂CF₃

were irradiated in the FTIR-smog chamber system:

$$CF_3CH(\bullet)OCH_2CF_3 + O_2 + M \rightarrow CF_3CH(OO\bullet)OCH_2CF_3 + M$$
 (2)

$$CF_3CH(OO\bullet)OCH_2CF_3 + NO \rightarrow CF_3CH(O\bullet)OCH_2CF_3 + NO_2$$
 (3a)

$$CF_3CH(OO\bullet)OCH_2CF_3 + NO + M \rightarrow CF_3CH(ONO_2)OCH_2CF_3 + M$$
 (3b)

The loss of $CF_3CH_2OCH_2CF_3$ and the formation of products were monitored by FTIR spectroscopy. There are three possible loss mechanisms for the alkoxy radical:

$$CF_3CH(O\bullet)OCH_2CF_3 + M \rightarrow CF_3CH_2OCHO + CF_3 + M$$
 (20)

$$CF_3CHO(\bullet)OCH_2CF_3 + O_2 \rightarrow CF_3C(O)OCH_2CF_3 + HO_2$$
 (29)

 CF_3 radicals from reaction 20 will add O_2 and react with NO, leading to formation of COF_2 :

$$CF_3 + O_2 + M \rightarrow CF_3O_2 + M$$
(21)

$$CF_3O_2 + NO \rightarrow CF_3O + NO_2$$
 (30)

$$CF_3O + NO \rightarrow COF_2 + FNO$$
 (31)

If reaction 20 is the dominant fate of $CF_3CH(O\bullet)OCH_2CF_3$ radicals we expect to observe the formation of COF_2 and CF_3-CH_2OCHO in molar yields of 100% (assuming that reaction 3b is of minor importance).

 $CF_3CH_2O({\bullet})$ radicals from reaction 28 will react with O_2 to give $CF_3C(O)H;^{24}$

$$CF_3CH_2O(\bullet) + O_2 \rightarrow CF_3C(O)H + HO_2$$
 (32)

The reactivity of CF₃C(O)H toward Cl atoms is 2.5 times that of the ether CF₃CH₂OCH₂CF₃,²⁵ and it is expected that for the conversions of CF₃CH₂OCH₂CF₃ used in the present study (6–66%) secondary loss of CF₃C(O)H via reaction 33 will be significant.

$$CF_3C(O)H + CI \rightarrow CF_3CO + HCl$$
 (33)

Under the present experimental conditions the CF₃CO radicals formed in reaction 33 will be converted into CF₃ radicals which,

Figure 8. Spectra acquired before (A) and after (B) a 7 min irradiation of a mixture of 5.2 mTorr of $CF_3CH_2OCH_2CF_3$, 11 mTorr of NO, 174 mTorr of Cl₂, and 10 Torr O₂ in 700 Torr total pressure of N₂ diluent. Spectrum C was obtained by stripping features attributable to NO, NO₂, CINO, and CINO₂ from panel B. Panels D and E are reference spectra of COF₂ and CF₃C(O)OCH₂CF₃.

in turn, will be converted into COF_2 via reactions 21, 30, and 31:

$$CF_3CO + O_2 \rightarrow CF_3C(O)O_2$$
 (34)

$$CF_3C(O)O_2 + NO \rightarrow CF_3CO(\bullet)O + NO_2$$
 (35)

$$CF_3CO(\bullet)O \rightarrow CF_3 + CO_2$$
 (36)

Thus, if reaction 28 is the dominant fate of $CF_3CHO(\bullet)OCH_2$ -CF₃ radicals we expect to observe the formation of COF_2 in a molar yield of 200%.

Four sets of experiments were performed with O₂ partial pressures of 10, 115, 400, and 600 Torr. Figure 8 shows spectra before (A) and after (B) irradiation of a mixture of 5.2 mTorr of CF₃CH₂OCH₂CF₃, 11 mTorr of NO, 174 mTorr of Cl₂, and 10 Torr of O₂ in 700 Torr total pressure with N₂. Spectrum C is obtained by stripping features attributable to NO, NO₂, ClNO, and ClNO₂ from panel B. Panels D and E are reference spectra of COF₂ and CF₃C(O)OCH₂CF₃. As seen from Figure 8C, while COF₂ was an observed product there was no observable formation of CF₃C(O)OCH₂CF₃ (<13% yield). The absence of CF₃C(O)OCH₂CF₃ suggests that reaction 29 is unimportant. Figure 9 shows a plot of the observed formation of COF₂ versus the loss of CF₃CH₂OCH₂CF₃. As seen in Figure 9, variation of the O₂ partial pressure by a factor of 60 had no discernible impact on the COF₂ yield, providing further support for the conclusion that reaction 29 is unimportant. Linear least-squares analysis of the data in Figure 9 gives a COF₂ yield of (90 \pm 8)%. Quoted uncertainties are two standard deviations; in addition we estimate that possible systematic errors associated

Figure 9. Plot of the observed yield of COF_2 versus the loss of CF_3 -CH₂OCH₂CF₃ following the irradiation of mixtures of 4.4–5.2 mTorr of CF₃CH₂OCH₂CF₃, 163–189 mTorr of Cl₂, 0–11 mTorr of NO, and 10 (\bigtriangledown), 115 (\bullet), 400 (\bigcirc), or 600 (\blacklozenge) Torr of O₂ in 700 Torr total pressure of N₂ diluent at 295 K.

with calibration of the COF₂ and CF₃CH₂OCH₂CF₃ reference spectra contribute an additional 10% uncertainty range. Propagating this uncertainty leads to a final value for the COF₂ yield of $90 \pm 12\%$.

The observation of a COF₂ yield of essentially 100% that is independent of the fractional loss of CF₃CH₂OCH₂CF₃ over the range 6–66% suggests that the sole atmospheric fate of CF₃-CH(O•)OCH₂CF₃ radicals is decomposition via elimination of a CF₃ group (reaction 20). Consistent with this conclusion a product feature at 1750–1800 cm⁻¹ was observed in all experiments (see Figure 8C). This feature scaled linearly with the loss of CF₃CH₂OCH₂CF₃ and has a frequency consistent with that expected for the carbonyl stretching mode of the formate CF₃CH₂OC(O)H. From the linear increase of CF₃CH₂-OCHO we conclude that $k_{37} < 0.5 \times k_{11}$, hence $k_{37} < 4 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹.

$$Cl + CF_3CH_2OCHO \rightarrow products$$
 (37)

The simulated atmospheric oxidation of CF₃CH₂OCH₂CF₃ in the presence of NO has also been studied by O'Sullivan et al.²⁶ Consistent with the results from the present work, O'Sullivan et al.²⁶ report the formation of CF₃CH₂OC(O)H and COF₂ as major products with a yield of \gg 90% in air. O'Sullivan et al.²⁶ also report the formation of CF₃C(O)OCH₂-CF₃ and that the yield of this product increased in experiments conducted in O₂. In contrast to the results of O'Sullivan et al.,²⁶ in the presence of NO we did not observe any formation of CF₃C(O)OCH₂CF₃ (yield < 13%) even in the presence of 600 Torr of O₂. From the upper limit for the CF₃C(O)OCH₂CF₃ yield measured here we can derive an upper limit for the rate constant ratio $k_{29}/k_{20} < 8 \times 10^{-21}$ cm³ molecule⁻¹. At 295 K in 1 atm of air < 4% of CF₃CH(O)•OCH₂CF₃ radicals undergo reaction with O₂.

For completeness, a limited series of experiments was performed using $CF_3CH_2OCH_2CF_3/Cl_2/O_2/N_2$ reaction mixtures (as above but without NO). Interestingly, a small (ca. 15%) yield of the ester $CF_3C(O)OCH_2CF_3$ was observed. However the yield of the ester was unaffected by variation of the O₂ partial pressure over the range 10–700 Torr and we conclude that the

ester is formed in reaction 16b, or 5b, or both, and not via reaction 29.

$$2 \text{ CF}_{3}\text{CH}(\text{OO}\bullet)\text{OCH}_{2}\text{CF}_{3} \rightarrow 2 \text{ CF}_{3}\text{CH}(\text{O}\bullet)\text{OCH}_{2}\text{CF}_{3} + \text{O}_{2} (16a)$$

$$2 \text{ CF}_{3}\text{CH}(\text{OO}\bullet)\text{OCH}_{2}\text{CF}_{3} \rightarrow \text{CF}_{3}\text{C}(\text{O})\text{OCH}_{2}\text{CF}_{3} + CF_{3}\text{CH}(\text{OH})\text{OCH}_{2}\text{CF}_{3} + O_{2}$$
(16b)

$$CF_3CH(OO\bullet)OCH_2CF_3 + HO_2 \rightarrow CF_3C(O)OCH_2CF_3 + H_2O + O_2$$
 (5b)

Implications for Atmospheric Chemistry. We present herein a large body of kinetic and mechanistic data pertaining to the atmospheric chemistry of bis(2,2,2-trifluoroethyl) ether. The atmospheric lifetime of bis(2,2,2-trifluoroethyl) ether is determined by its reaction with OH radicals and has been estimated to be ≫114 days.²⁶ Reaction with OH gives the alkyl radical CF₃CH(•)OCH₂CF₃. In 1 atm of air this alkyl radical has a lifetime of 84 ns with respect to addition of O₂ to give the corresponding peroxy radical $CF_3CH(OO\bullet)OCH_2CF_3$. We show here that the peroxy radical reacts rapidly with NO to produce NO₂ and, by inference, CF₃CH(O•)OCH₂CF₃ radicals. Using $k_3 = 1.4 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ together with an estimated background tropospheric NO concentration of 2.5 \times 10^8 molecule cm⁻³, the lifetime of the peroxy radicals with respect to reaction with NO is calculated to be 5 min. Reaction 3 is likely to be an important atmospheric loss of CF₃CH(OO•)-OCH₂CF₃ radicals. The sole fate of the alkoxy radical derived from bis(2,2,2-trifluoroethyl) ether is decomposition via C-C bond scission to give 2,2,2-trifluoroethyl formate (CF₃CH₂-OCHO) and a CF₃ radical. This behavior is entirely consistent with the available database concerning the behavior of similar nonfluorinated alkoxy radicals, e.g., C₂H₅OCH(O•)CH₃ and (CH₃)₃COCH(O•)CH₃ radicals are known to decompose via C-C bond scission to give formates.²⁷ It is reported herein that the formate CF3CH2OCHO is rather unreactive toward Cl atoms and is likely to be similarly unreactive toward OH radicals. Organic compounds which react with Cl atoms with rate constants in the range 10⁻¹⁴-10⁻¹³ cm³ molecule⁻¹ s⁻¹ generally react faster with Cl atoms than with OH radicals. Hence, we can use the value of $k_{37} \le 4 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1}$ s^{-1} as an upper limit to $k(OH + CF_3CH_2OCHO)$. Using the structure-reactivity relationship approach²⁸ gives an estimate of the reactivity of the -CH2- group in CF3CH2OCHO toward OH attack of 1.1×10^{-13} cm³ molecule⁻¹ s⁻¹. In typical formates (methyl formate, ethyl formate etc.) the formate group itself is considered to make a negligible contribution to the overall reactivity of the molecule, and consequently structurereactivity factors for the formate group are not available. In the case of CF₃CH₂OCHO the reactivity of the formate group may make a significant contribution to the overall reactivity and it is difficult to estimate the overall reactivity of CF₃CH₂-OCHO toward OH radicals. Using a 24 h global average OH concentration of 1×10^6 cm⁻³ and k(OH + CF₃CH₂OCHO) < 4×10^{-13} cm³ molecule⁻¹ s⁻¹, we derive a lower limit of 30 days for the atmospheric lifetime of CF3CH2OCHO with respect to reaction with OH radicals. In view of the polar nature of CF₃CH₂OCHO it seems likely that the main atmospheric removal mechanism of this compound will be via wet/dry

Figure 10. IR spectrum of CF₃CH₂OCH₂CF₃.

deposition and possibly photolysis. There are no available data for the rates of these processes and hence it is not possible to provide an estimate of the atmospheric lifetime of CF_3CH_2 -OCHO at this time.

The atmospheric degradation of HFEs produce the same fluorinated radical species as formed during the degradation of HFCs. HFCs do not impact stratospheric ozone³ and the same conclusion applies to HFEs. Bis(2,2,2-trifluoroethyl) ether has an ozone depletion potential of zero. Finally we need to consider the potential for bis(2,2,2-trifluoroethyl) ether to impact the radiative balance in the atmosphere. Using the method of Pinnock et al.²⁹ with the IR spectrum shown in Figure 10 we calculate instantaneous forcings for bis(2,2,2-trifluoroethyl) ether and CFC-11 of 0.35 W/m² and 0.26 W/m², respectively. Values of the GWP (global warming potential) for bis(2,2,2-trifluoroethyl) ether (relative to CFC-11) can then be estimated using the expression

$$\mathrm{GWP}_{\mathrm{ether}} = \left(\frac{\mathrm{IF}_{\mathrm{ether}}}{\mathrm{IF}_{\mathrm{CFC}-11}}\right) \left(\frac{\tau_{\mathrm{ether}} M_{\mathrm{CFC}-11}}{\tau_{\mathrm{CFC}-11} M_{\mathrm{ether}}}\right) \left(\frac{1 - \exp(-t/\tau_{\mathrm{ether}})}{1 - \exp(-t/\tau_{\mathrm{CFC}-11})}\right)$$

where IF_{ether}, IF_{CFC-11}, M_{ether} , M_{CFC-11} , t_{ether} , and t_{CFC-11} are the instantaneous forcings, molecular weights, and atmospheric lifetimes of the two species and *t* is the time horizon over which the forcing is integrated. Using $t_{ether} \gg 114$ days²⁶ and t_{CFC-11} = 50 years,²⁹ we estimate that the GWP of bis(2,2,2-trifluoroethyl) ether is $\gg 0.019$ for a 20 year horizon and $\gg 0.007$ for a 100 year time horizon. The GWP of bis(2,2,2-trifluoroethyl) ether is modest.

Acknowledgment. The work at Risø was supported by the European Union. We thank Mike Hurley (Ford) for providing Figure 10, Steve Japar (Ford) for helpful comments, and Roger Atkinson (University of California) for advice on SAR calculations.

References and Notes

(1) Molina, M. J.; Rowland, F. S. Nature 1974, 249, 810.

(2) Farman, J. D.; Gardiner, B. G.; Shanklin, J. D. Nature 1985, 315, 207.

(3) Wallington, T. J.; Schneider, W. F.; Worsnop, D. R.; Nielsen, O. J.; Sehested J.; Debruyn, W. J.; Shorter, J. A. *Environ. Sci. Technol.* **1994**, 28 (8), 320.

(4) Sehested, J. Ph.D. Thesis, 1994.

(5) Hansen, K. B.; Wilbrandt, R., Pagsberg, P. Rev. Sci. Instr. 1979, 50, 1532.

(6) Wallington, T. J.; Japar, S. M. J. Atmos. Chem. 1989, 9, 399.

(7) Wallington, T. J.; Dagaut, P.; Kurylo, M. J. Chem. Rev. 1992, 92, 667.

(8) Wallington, T. J.; Ellermann, T.; Nielsen, O. J. Res. Chem. Intermed. 1994, 20, 265.

(9) Wallington, T. J.; Hurley, M. D.; Maricq, M. M.; Sehested, J.; Nielsen, O. J.; Ellermann, T. Int. J. Chem. Kinet. **1993**, 25, 651.

(10) Ellermann, T.; Sehested, J.; Nielsen, O. J.; Pagsberg, P.; Wallington T. J. Chem. Phys. Lett. **1994**, 218, 287.

(11) Lightfoot, P. D.; Cox, R. A.; Crowley, J. N.; Destriau, M.; Hayman, G. D.; Jenkin, M. E.; Moortgat, G. K.; Zabel, F. *Atmos. Environ.* **1992**, *26A*, 1805.

(12) Lesclaux, R. Combination of peroxyl radicals in the gas phase. In *Peroxyl radicals*; Alfassi, Z., Ed.; John Wiley: New York, 1997.

(13) Rasmussen, O. L., Bjergbakke, E. B., Lynggaard, B., Pagsberg, P.; Kirkegaard, P. *CHEMSIMUL*. Risoe National Laboratory: Roskilde, Denmark, (9306), 1993. 1993.

(14) Sehested, J.; Christensen, L. K.; Møgelberg, T. E.; Nielsen, O. J.; Wallington, T. J.; Guschin, A.; Orlando, J. J.; Tyndall, G. S. *J. Phys. Chem. A*, in press.

(15) Sehested, J.; Ellermann, T.; Nielsen, O. J.; Wallington, T. J. Int. J. Chem. Kinet. 1994, 26, 615.

(16) Wallington, T. J.; Ellermann, T.; Nielsen, O. J.; Sehested, J. J. Phys. Chem. 1994, 98, 2346.

(17) Kaiser, E. W.; Wallington, T. J.; Hurley, M. D. Int. J. Chem. Kinet. 1995, 27, 205.

(18) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data **1997**, 26, 521.

(19) Wallington, T. J.; Hurley, M. D.; Shi, J.; Maricq, M. M.; Sehested, J.; Nielsen, O. J.; Ellermann, T. Int. J. Chem. Kinet. **1993**, 25, 651.

(20) Wallington, T. J.; Hurley, M. D. *Chem. Phys. Lett.* **1992**, *189*, 437.
(21) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.;

Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina,

M. J. Jet Propulsion Laboratory Publication 94-26, Pasadena, CA, 1994.

(22) Wallington, T. J.; Hurley, M. D.; Ball J. C.; Jenkin M. E. Chem. Phys. Lett. 1993, 211, 41.

(23) Mallard, W. G.; Westley, F.; Heron, J. T.; Hampson, R. F. NIST Chemical Kinetics Database, Version 6.0, 1994.

(24) Nielsen, O. J.; Gamborg, E.; Sehested, J.; Wallington, T. J.; Hurley, M. D. J. Phys. Chem. **1994**, *98*, 9518.

(25) Wallington, T. J.; Hurley, M. D. Int. J. Chem. Kinet. 1993, 25, 819.

(26) O'Sullivan, N.; Wenger, J.; Sidebottom, H. W. The oxidizing capacity of the troposphere. *Proceedings of the Seventh European Commission symposium on physicochemical behavior of atmospheric pollutants*, Venice, Italy, October 1996; Larsen, B., Versino, B., Eds.; p 77.

(27) Japar, S. M.; Wallington, T. J.; Richert, J. F. O.; Ball. J. C. Int. J. Chem. Kinet. 1990, 22, 1257.

(28) Kwok, E. S. C.; Atkinson, R. Atmos. Environ. 1995, 29, 1685.

(29) Pinnock, S.; Hurley, M. D.; Shine, K. P.; Wallington, T. J.; Smyth, T. J. J. Geophys. Res. 1995, 100, 23227.